Pesticide dispersion-advection equation with soil temperature effect
نویسندگان
چکیده
منابع مشابه
A numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملApplication of a fractional advection-dispersion equation
A transport equation that uses fractional-order dispersion derivatives has fundamental solutions that are Lévy’s a-stable densities. These densities represent plumes that spread proportional to time, have heavy tails, and incorporate any degree of skewness. The equation is parsimonious since the dispersion parameter is not a function of time or distance. The scaling behavior of plumes that unde...
متن کاملSubordinated Advection-dispersion Equation for Contaminant Transport
A mathematical method called subordination broadens the applicability of the classical advection--dispersion equation for contaminant transport. In this method, the time variable is randomized to represent the operational time experienced by different particles. In a highly heterogeneous aquifer, the operational time captures the fractal properties of the medium. This leads to a simple, parsimo...
متن کاملTwo-dimensional advection-dispersion equation with depth- dependent variable source concentration
The present work solves two-dimensional Advection-Dispersion Equation (ADE) in a semi-infinite domain. A variable source concentration is regarded as the monotonic decreasing function at the source boundary (x=0). Depth-dependent variables are considered to incorporate real life situations in this modeling study, with zero flux condition assumed to occur at the exit boundary of the domain, i.e....
متن کاملA KdV-like advection-dispersion equation with some remarkable properties
We discuss a new non-linear PDE, ut + (2uxx/u)ux = uxxx , invariant under scaling of dependent variable and referred to here as SIdV. It is one of the simplest such translation and space-time reflection-symmetric first order advection-dispersion equations. This PDE (with dispersion coefficient unity) was discovered in a genetic programming search for equations sharing the KdV solitary wave solu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Environmetrics
سال: 2003
ISSN: 1180-4009,1099-095X
DOI: 10.1002/env.593